输入问题...
基础数学 示例
解题步骤 1
解题步骤 1.1
从每组中因式分解出最大公因数。
解题步骤 1.1.1
将首两项和最后两项分成两组。
解题步骤 1.1.2
从每组中因式分解出最大公因数 (GCF)。
解题步骤 1.2
通过因式分解出最大公因数 来因式分解多项式。
解题步骤 1.3
将 重写为 。
解题步骤 1.4
因为两项都是完全平方数,所以使用平方差公式 进行因式分解,其中 和 。
解题步骤 1.5
合并指数。
解题步骤 1.5.1
对 进行 次方运算。
解题步骤 1.5.2
对 进行 次方运算。
解题步骤 1.5.3
使用幂法则 合并指数。
解题步骤 1.5.4
将 和 相加。
解题步骤 2
解题步骤 2.1
对于 形式的多项式,将其中间项重写为两项之和,这两项的乘积为 并且它们的和为 。
解题步骤 2.1.1
从 中分解出因数 。
解题步骤 2.1.2
把 重写为 加
解题步骤 2.1.3
运用分配律。
解题步骤 2.2
从每组中因式分解出最大公因数。
解题步骤 2.2.1
将首两项和最后两项分成两组。
解题步骤 2.2.2
从每组中因式分解出最大公因数 (GCF)。
解题步骤 2.3
通过因式分解出最大公因数 来因式分解多项式。
解题步骤 3
解题步骤 3.1
从 中分解出因数 。
解题步骤 3.2
从 中分解出因数 。
解题步骤 3.3
从 中分解出因数 。
解题步骤 4
合并。
解题步骤 5
解题步骤 5.1
从 中分解出因数 。
解题步骤 5.2
约去公因数。
解题步骤 5.2.1
从 中分解出因数 。
解题步骤 5.2.2
约去公因数。
解题步骤 5.2.3
重写表达式。
解题步骤 6
解题步骤 6.1
从 中分解出因数 。
解题步骤 6.2
约去公因数。
解题步骤 6.2.1
从 中分解出因数 。
解题步骤 6.2.2
约去公因数。
解题步骤 6.2.3
重写表达式。